Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
and3(not1(not1(x)), y, not1(z)) -> and3(y, band2(x, z), x)
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
and3(not1(not1(x)), y, not1(z)) -> and3(y, band2(x, z), x)
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
and3(not1(not1(x)), y, not1(z)) -> and3(y, band2(x, z), x)
The set Q consists of the following terms:
and3(not1(not1(x0)), x1, not1(x2))
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
AND3(not1(not1(x)), y, not1(z)) -> AND3(y, band2(x, z), x)
The TRS R consists of the following rules:
and3(not1(not1(x)), y, not1(z)) -> and3(y, band2(x, z), x)
The set Q consists of the following terms:
and3(not1(not1(x0)), x1, not1(x2))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
AND3(not1(not1(x)), y, not1(z)) -> AND3(y, band2(x, z), x)
The TRS R consists of the following rules:
and3(not1(not1(x)), y, not1(z)) -> and3(y, band2(x, z), x)
The set Q consists of the following terms:
and3(not1(not1(x0)), x1, not1(x2))
We have to consider all minimal (P,Q,R)-chains.